diberikan kepada

Dr. Anak Agung Gede Ngurah, M.Si.

sebagai NARASUMBER dalam kegiatan "Workshop on Graph Labelings"
yang diselenggarakan oleh Jurusan Matematika Universitas Pendidikan Ganesha
pada 28 Agustus 2019 bertempat di Fakultas MIPA Undiksha, Singaraja - Bali

Dekan FMIPA Undiksha

Ketua Jurusan Matematika

Prof. Dr. I Nengah Suparta, M.Si.

Dr. Gede Suweken, M.Sc.

NIP 196507111990031003

NIP 196111111987021001
Workshop of Graph Labelings

Anak Agung Gede Ngurah

Universitas Merdeka Malang

Singaraja, August 28, 2019
Graph Labeling

- G is a finite and simple graph.

 $V(G) =$ vertex set; $|V(G)| = p,$
 $E(G) =$ edge set; $|E(G)| = q.$

- A labeling of a graph G is a one to one mapping from some set of graph elements to a set of positive integers.

 - A vertex labeling $f : V(G) \rightarrow \{1, 2, 3, \ldots, p\}.$
 - An edge labeling $f : E(G) \rightarrow \{1, 2, 3, \ldots, q\}.$
 - A total labeling $f : V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, p + q\}.$
Let f be a total labeling of G.

- **Vertex-weight** $w(v), v \in V(G)$:

 Sum of label of v and labels of its incident edges;
 \[
 w(v) = f(v) + \sum_{u \in N(v)} f(uv).
 \]

- **Edge-weight** $w(e), e = uv \in E(G)$:

 Sum of label of e and of labels of its endpoints;
 \[
 w(uv) = f(u) + f(uv) + f(v).
 \]
Magic (Antimagic) Labeling

- A vertex-magic (vertex-antimagic) total labeling.
- An edge-magic (edge-antimagic) total labeling.
A vertex-magic total labeling of a graph G with p vertices and q is a bijective function

$$f : V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, p + q\}$$

such that $w(x) = f(x) + \sum_{y \in N(x)} f(xy) = k_f$ is a constant for any vertex $x \in V(G)$.

G is called a vertex-magic total graph.

k_f is called magic constant of f.

Vertex-Antimagic Total Labeling

- An \((a, d)\)-vertex-antimagic total labeling of a graph \(G\) with \(p\) vertices and \(q\) is a bijective function

\[
f : V(G) \cup E(G) \to \{1, 2, 3, \ldots, p + q\}
\]

such that \(\{f(x) + \sum_{y \in N(x)} f(xy) : x \in V(G)\} = \{a, a + d, a + 2d, \ldots, a + (q - 1)d\}\) for two integers \(a > 0\) and \(d \geq 0\).

- \(G\) is called an \((a, d)\)-vertex-antimagic total graph.

Edge-Antimagic Total Labeling

- An \((a, d)\)-edge-antimagic total labeling of a graph \(G\) with \(p\) vertices and \(q\) is a bijective function

\[
f : V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, p + q\}
\]

such that \(\{f(x) + f(xy) + f(y) : xy \in E(G)\} = \{a, a + d, a + 2d, \ldots, a + (q - 1)d\}\) for two integers \(a > 0\) and \(d \geq 0\).

- \(G\) is called an \((a, d)\)-edge-antimagic total graph.

Figure: (a). A VMT graph with $k = 12$. (b). A (9, 2)-VAT graph. (c) A (9, 2)-EAT graph. (d) An EMT graph $k = 12$.
Edge-Magic Total Labeling

- An edge-magic total labeling (EMTL) of a graph G with p vertices and q edges is a one to one mapping

$$f : V(G) \cup E(G) \rightarrow \{1, 2, 3, \ldots, p + q\}$$

such that $f(x) + f(xy) + f(y) = k_f$ is a constant for any edge xy of G.

- G is called an edge-magic total graph.
- k_f is called magic constant of f.

- **Conjecture**: Every tree is edge-magic total.

Super Edge-Magic Total Labeling

- An edge-magic total labeling f of G is called a super edge-magic total labeling (SEMTL) if $f(V(G)) = \{1, 2, 3, \ldots, p\}$.
- G is called a super edge-magic total graph.

- Conjecture: Every tree is super edge-magic total.

Example

Figure: An edge-magic total graph with $k = 12$ and a super edge-magic total graph $k = 18$.
Elementary Counting

Let G be a graph with $V(G) = \{x_1, x_2, \ldots, x_p\}$ and f be an EMTL of G.

$$\sum_{xy \in E(G)} [f(x) + f(xy) + f(y)] = kq$$

This sum contains each edge label once, and each vertex label d_i times, where d_i is degree of the vertex x_i. Thus,

$$kq = \frac{1}{2}(p + q)(p + q + 1) + \sum (d_i - 1)f(x_i) \ldots (*)$$

If q is even, $p + q \equiv 2 \pmod{4}$, and every d_i is odd, then $(*)$ is impossible.
Elementary Counting

- If G has q even, $p + q \equiv 2 \pmod{4}$, and every vertex has odd degree, then G has no EMTL. [1]
 - The complete graph K_n is not EMT when $n \equiv 4 \pmod{8}$.
 - The Wheel W_n is not EMT when $n \equiv 3 \pmod{4}$.
 - The graph tK_n, consisting t disjoin copies of K_n, is not EMT when $n \equiv 4 \pmod{8}$ and t is odd.
 - The Wheel tW_n is not EMT when $n \equiv 3 \pmod{4}$ and t is odd.

Research Problem. [2]. Investigate graphs G for which equation (*) implies the non-existence of an EMTL of $2G$.

Elementary Counting

Equation (*) may be used to provide bounds of magic constant k.

Let $d_1 \leq d_2 \leq \ldots \leq d_p$, then

$$kq \leq \left\lfloor \frac{1}{2} (p + q)(p + q + 1) + d_1(q + 1) + d_2(q + 2) + \ldots + d_p(p + q) \right\rfloor$$

and

$$kq \geq \left\lceil \frac{1}{2} (p + q)(p + q + 1) + d_1(p) + d_2(p + 1) + \ldots + d_p(1) \right\rceil.$$
Example: If $G = K_3$, then $k = 7 + \frac{1}{3} \sum_{i=1}^{3} f(x_i)$. So, $9 \leq k \leq 12$.

- $k = 9$, $\{f(x_1), f(x_2), f(x_3)\} = \{1, 2, 3\}$.
- $k = 10$, $\{f(x_1), f(x_2), f(x_3)\} = \{1, 3, 5\}$.
- $k = 11$, $\{f(x_1), f(x_2), f(x_3)\} = \{2, 4, 6\}$.
- $k = 12$, $\{f(x_1), f(x_2), f(x_3)\} = \{4, 5, 6\}$.
Elementary Counting

Example: If $G = K_5$, then $k = 12 + \frac{3}{10} \sum_{i=1}^{5} f(x_i)$. So, $18 \leq k \leq 30$.

- $k = 18$, $\{f(x_1), f(x_2), \ldots, f(x_5)\} = \{1, 2, 3, 5, 9\}$.
- $k = 24$, $\{f(x_1), f(x_2), \ldots, f(x_5)\} = \{1, 8, 9, 10, 12\}$.
- $k = 24$, $\{f(x_1), f(x_2), \ldots, f(x_5)\} = \{4, 6, 7, 8, 15\}$.
- $k = 30$, $\{f(x_1), f(x_2), \ldots, f(x_5)\} = \{7, 11, 13, 14, 15\}$.
- $k = 21, 27$ no solutions.
Dual Labeling

- If f is an EMTL of a graph G with magic constant k, then $f'(u) = (p + q + 1) - f(u), u \in V(G) \cup E(G)$, is an EMTL of G with magic constant $k' = 3(p + q + 1) - k$. [1]

- If f is a SEMTL of a graph G with magic constant k, then

$$f'(u) = \begin{cases} p + 1 - f(u), & \text{if } u \in v(g), \\ 2p + q + 1 - f(u), & \text{if } u \in E(G). \end{cases}$$

is a SEMTL of G with magic constant $k' = 4p + q + 3 - k$. [2]

Some Known EMT Graphs

- Cycle C_n for any $n \geq 3$.
- Wheel W_n for any $n \equiv 0, 1, 2 \pmod{4}$.
- Fan F_n for any $n \geq 2$.
- Sun $C_n \odot K_1$ for any $n \geq 3$.
- Complete bipartite graph $K_{n,m}$ for an $n \geq 1$ and $m \geq 1$.
- Book $B_{3,n}$, a graph consists of n triangles with a common edge, for any $n \geq 1$.
- Generalize Petersen Graph $P(n, m)$ for odd $n \geq 3$.

Research Problems:

- The book $B_{m,n}$ consists of n copies of C_m with a common edge. Are all book $B_{m,n}$ EMT?
- An (n, t)-kite consists of a cycle C_n with t-edge path attached to one vertex. Investigate the EMT properties of (n, t)-kites for any t.
Some Known EMT Graphs

- If G is a 3-colorable EMT graph, then mG is EMT graph for every odd $m \geq 3$.

$3 \times m$ array Kotzig is

$$A = \begin{bmatrix}
0 & 1 & \ldots & s-1 & s & s+1 & \ldots & 2s-1 & 2s \\
s+1 & s+2 & \ldots & 2s & 0 & 1 & \ldots & s-1 & s \\
2s-1 & 2s-3 & \ldots & 1 & 2s & 2s-2 & \ldots & 2 & 0
\end{bmatrix}$$

$$B = \begin{bmatrix}
1 & 2 & \ldots & s & s+1 & s+2 & \ldots & 2s & 2s+1 \\
s+2 & s+3 & \ldots & 2s+1 & 1 & 2 & \ldots & s & s+1 \\
2s & 2s-2 & \ldots & 2 & 2s+1 & 2s-1 & \ldots & 3 & 1
\end{bmatrix}$$

Research Problems:
- Is mW_n an EMT graph when $n \equiv 1 \pmod{4}$ and m is odd?

(Super) Edge-Magic Total Strength

The \textit{(super) edge-magic total strength} of a graph \(G \), \((s)\text{emt}(G) \), is the minimum of all magic constant \(k \) where the minimum is taken over all (S)EMTL of \(G \). That is,

\[
(s)\text{emt}(G) = \min\{k : f \text{ is an (S)EMTL of } G\}.
\]

Perfect (super) Edge-Magic Total Graph

- Let $T_G = \{ \frac{\sum_{u \in V(G)} d(u)f(u) + \sum_{e \in E(G)} f(e)}{q} \mid f : V(G) \cup E(G) \to \{1, 2, \ldots, p + q\} \text{ is a bijection} \}$.

- (Super) magic interval of G,
 $$J_G = \{ \lfloor \min T_G \rfloor, \lfloor \min T_G \rfloor + 1, \ldots, \lfloor \max T_G \rfloor \}.$$

- (Super) magic set of G,
 $$\sigma_G = \{ k \in J_G \mid k \text{ is magic constant of some (S)EMTL of } G \}.$$

- G is perfect (S)EMT if $J_G = \sigma_G$.

Super Edge-Magic Total Tree

Figure: Is this a tree?

A. A. G. Ngurah Undiksha 2019
Super Edge-Magic Total Tree

- Path
- Star
- Caterpillar
- Tree with at most 17 vertices
- Path-like-tree
- Symmetric binary tree
- Firecracker
- Banana tree

Super Edge-Magic Total Tree

Figure: A path and path-like-trees?
More Results on Super Edge-Magic Total Labeling

- If \(G \) is SEMT, then \(q \leq 2p - 3 \). [1].
 - \(W_n \) is not SEMT for any \(n \).
 - \(K_n \) is not SEMT for any \(n \geq 3 \).
 - No regular graph of degree greater than 3 can be SEMT.
 - Every SEMT graph contains at least two vertices of degree less than 4.

- A graph \(G \) is SEMT if and only if there is a bijective function
 \[f : V(G) \rightarrow \{1, 2, 3, \ldots , p\} \]
 such that the set \(S = \{f(x) + f(y) | xy \in E(G)\} \) is a set of \(q \) consecutive integers. [2].
 - If degree of every vertex of \(G \) is even and \(q \equiv 2 \pmod{4} \), then
 is not a SEMT graph.

More Results on Super Edge-Magic Total Labeling

- If a graph G that is a tree or where $q \geq p$ is SEMT, then G is sequential, harmonious, cordial. [1].
- Suppose that G is a SEMT bipartite graph with partite sets V_1 and V_2 and let f be a SEMTL of G such that $f(V_1) = \{1, 2, 3, \ldots, |V_1|\}$, then G has an α-valuation. [1].

1. A sun $C_n \odot K_1$ is a graph constructed from a cycle C_n by attaching one pendant to each vertex of the cycle C_n. Find the (super) edge-magic total strength of $C_3 \odot K_1$.
2. Prove that the sun $C_3 \odot K_1$ is a perfect (super) edge-magic total graph.
3. Find all possible values of magic constant for an edge-magic total labeling of $K_{1,m}$.
4. The graph $W_n - \{e\}$ is constructed from a wheel W_n by deleting an edge. Which $W_n - \{e\}$ are super edge-magic total?
Results on 2-regular Graphs

Holden et al. proved that,

- $C_5 \cup (2t)C_3$ is SEMT for each integer $t \geq 3$.
- $C_4 \cup (2t - 1)C_3$ is SEMT for each integer $t \geq 3$.
- $C_7 \cup (2t)C_3$ is SEMT for each integer $t \geq 1$.

- **Conjectured**: The super edge-magic deficiency of all 2-regular graphs of odd order is **zero**, excluding $C_3 \cup C_4$, $3C_3 \cup C_4$ and $2C_3 \cup C_5$.

Results on 2-regular Graphs

Figueroa-Centeno, Ichishima, and Muntaner-Batle proved that:

- $C_3 \cup C_n$ is SEMT iff $n \geq 6$ and n is even.
- $C_4 \cup C_n$ is SEMT iff $n \geq 5$ and n is odd.
- $C_5 \cup C_n$ is SEMT iff $n \geq 4$ and n is even.
- $C_n \cup C_m$ is SEMT if n is even and $m \geq \frac{n}{2} + 1$ is odd.

Results on 2-regular Graphs

Let $G \cong \bigcup_{i=1}^{k} C_{n_i}$, $H \cong \bigcup_{i=1}^{k} (m, n_i)C_{[m,n_i]}$, and let m be odd. If G is SEMT, then H is SEMT.

- (a, b) is the greatest common divisor of a and b,
- $[a, b]$ is the least common multiple of a and b.

Results on 2-regular Graphs

A graph \(G \cup tK_1 \) is called \textit{pseudo super edge-magic total} (PSEMT) if there exists a bijection \(f : V(G \cup kK_1) \to \{1, 2, 3, \ldots |V(G)| + t\} \) such that the set \(\{f(x) + f(y) : xy \in E(G)\} \cup \{2f(u) : u \in kK_1\} \) is a set of \(|E(G)| + t \) consecutive integers. In such a case \(f \) is called a \textit{pseudo super edge-magic total labeling} (PSEMTL) of \(G \cup kK_1 \).

- Let \(G \cong \bigcup_{i=1}^{k} C_{n_i} \cup tK_1 \), \(H \cong \bigcup_{i=1}^{k} (m, n_i)C_{[m,n_i]} \cup tC_m \), and let \(m \) be odd. If \(G \) is PSEMT, then \(H \) is SEMT.
 - \((a, b)\) is the \textit{greatest common divisor} of \(a \) and \(b \),
 - \([a, b]\) is the \textit{least common multiple} of \(a \) and \(b \).

Results on 2-regular Graphs

Cichacz et al. [1] (2017) introduced a technique for constructing vertex-magic total labelings of 2-regular graphs and proved the following results, which contributes significantly to Holden et al. [2] conjecture.

- [1] If \(G \cong \bigcup_{i=1}^{k} C_{n_i} \) is SEMT, then \(H \cong \bigcup_{i=1}^{k} C_{mn_i} \) is SEMT for every odd \(m \).

In 1970, Kotzig and Rosa proved that for every graph G there exists an edge-magic graph H such that $H \cong G \cup nK_1$ for some nonnegative integer n.

- The edge-magic deficiency of a graph G, $\mu(G)$, is defined as $\mu(G) = \min\{n \geq 0 : G \cup nK_1 \text{ is edge-magic}\}$.

- $\mu(G) \leq F_{p+2} - 2 - p - \frac{1}{2}p(p - 1)$, where $p = |V(G)|$ and F_p is the pth Fibonacci number.

Super Edge-Magic Deficiency

- Let G be a graph and let

$$M(G) = \min\{n \geq 0 : G \cup nK_1 \text{ is super edge-magic}\}.$$

The super edge-magic deficiency of a graph G, $\mu_s(G)$, is defined to be

$$\mu_s(G) = \begin{cases}
\min M(G), & \text{if } M(G) \neq \emptyset, \\
+\infty, & \text{if } M(G) = \emptyset.
\end{cases}$$

- $\mu_s(G)$ measure how “close” a graph to be a super edge-magic graph.
- $\mu(G) \leq \mu_s(G)$, for every graph G.

Example

Figure: (a) $\mu(C_4) = 0$, (b) $\mu_s(C_4) = 1$, (c) $\mu(K_4) = \mu_s(K_4) = 1$
Graph G with $\mu_s(G) = +\infty$

Let G be a graph of size q such that $\text{deg}(v)$ is even for all $v \in V(G)$ and $q \equiv 2 \pmod{4}$, then $\mu_s(G) = +\infty$.

$\mu_s(C_n) = +\infty$, if $n \equiv 2 \pmod{4}$.

Graph G with $\mu_s(G) = \infty$

A set $X = \{x_1 < x_2 < \cdots < x_n\} \subseteq \mathbb{N}$ is a well-spread set (WS-set for short) if the sums $x_i + x_j$ for $i < j$ are all different.

The smallest span of pairwise sums of cardinality n, denoted by $\rho^*(n)$,

$\rho^*(n) = \min\{x_n + x_{n-1} - x_2 - x_1 : \{x_1 < x_2 < \cdots < x_n\}\text{ is a WS-set}\}$.

- The smallest span of pairwise sums of cardinality n, $\rho^*(n)$ satisfies: $\rho^*(4) = 6$, $\rho^*(5) = 11$, $\rho^*(6) = 19$, $\rho^*(7) = 30$, $\rho^*(8) = 43$ and $\rho^*(n) > n^2 - 5n + 14$ for $n > 9$.

Graph G with $\mu_s(G) = +\infty$

- Let G be a graph that contains the complete subgraph K_n. If $|E(G)| < \rho^*(n)$, then $\mu_s(G) = +\infty$.
- For any positive integer n,

$$\mu_s(K_n) = \begin{cases}
0, & \text{if } n = 1, 2, 3, \\
1, & \text{if } n = 4, \\
+\infty, & \text{for otherwise.}
\end{cases}$$

Super Edge-Magic Deficiency of Forests

- Let F be a forest, then $\mu_s(F) \leq +\infty$.
- For every positive integer n,
 \[\mu_s(nK_2) = \begin{cases}
 0, & \text{if } n \text{ is odd}, \\
 1, & \text{if } n \text{ is even}.
\end{cases} \]

Super Edge-Magic Deficiency of Forests

- For every two positive integers \(m \) and \(n \),

\[
\mu_s(P_m \cup K_{1,n}) = \begin{cases}
1, & \text{if } m = 2 \text{ and } n \text{ is odd,} \\
& \text{or } m = 3 \text{ and } n \not\equiv 3 \pmod{3}, \\
0, & \text{otherwise.}
\end{cases}
\]

- For every two positive integers \(m \) and \(n \),

\[
\mu_s(K_{1,m} \cup K_{1,n}) = \begin{cases}
0, & \text{either } m \text{ is a multiple of } n + 1, \\
& \text{or } n \text{ is a multiple of } m + 1, \\
1, & \text{otherwise.}
\end{cases}
\]

Super Edge-Magic Deficiency of Forests

- For every two positive integers m and n,

$$\mu_s(P_m \cup P_n) = \begin{cases}
1, & \text{if } (m, n) \in \{(2, 2), (3, 3)\}, \\
0, & \text{otherwise.}
\end{cases}$$

- **Conjecture**: If F is a forest with two components then $\mu_s(F) \leq 1$.

Super Edge-Magic Deficiency of Forests

A banana tree $BT(n_1, n_2, \ldots, n_k)$ is a tree obtained from the stars $K_{1,n_1}, K_{1,n_2}, \ldots, K_{1,n_k}$ by joining a new vertex to a single leave of each star.

- Let $G \cong BT(n_1, n_2) \cup BT(m_1, m_2, \ldots, m_k)$. For $n_2 = 2k$, $n_1 \geq n_2 \geq m_1 \geq m_2 \geq \ldots \geq m_k$ and $|V(G)| \equiv 2 \pmod{4}$, then $\mu_s(G) \leq 1$.
- For every $n \geq 3$, $\mu_s(K_{1,n-1} \cup K_{1,n} \cup K_{1,5n-12}) = 0$.
- For $k \geq 3$ is odd, $n \geq 5$, and $m \geq 3$, $\mu_s(P_n \cup P_{n+k} \cup K_{1,m}) \leq n + \lfloor \frac{k}{2} \rfloor$.
- For $n \geq 4$ and $m \geq 3$, $\mu_s(P_{n-1} \cup P_n \cup K_{1,m}) \leq n - 1$.
- For $n \geq 3$ and $m \geq 3$, $\mu_s(P_n \cup P_{2n} \cup K_{1,m}) \leq \lfloor \frac{3n}{2} \rfloor - 1$.

Super Edge-Magic Deficiency of Forests

Imran and Mukhtar (2017) proved that $\mu_s(G) = 0$ if

- $G \cong T(n, n, n, n + 1) \cup K_{1, \frac{1}{2}(n-2)}, \ 3 \leq n \equiv 1 \ (\text{mod} \ 2),$
- $G \cong T(n, n - 1, t, t + 2) \cup K_{1, \frac{t}{2}}, \ t \geq n$ and $n, t \equiv 0 \ (\text{mod} \ 2),$
- $G \cong T(n, n - 1, t, t + 2, 2t + 4) \cup K_{1, t+1}, \ t \geq n \geq 4$ and $n, t \equiv 0 \ (\text{mod} \ 2),$
- $G \cong T(n, n - 1, t, t + 2, 2t + 4, 4t + 8) \cup K_{1, 2t+3}, \ t \geq n \geq 2$ and $n, l \equiv 0 \ (\text{mod} \ 2),$
- $G \cong T(n, n - 1, t, t + 2, \ldots, t_r) \cup K_{1, \frac{t}{2}}, \ t \geq n \geq 2, \ n, t \equiv 0 \ (\text{mod} \ 2),$ and $4 \leq t_r = 2^{r-4}(t + 2)r,$

where $T(n_1, n_2, \ldots, n_r)$ is a graph obtained by replacing each edge of a star $K_{1,n}$ by a path of length $n_1, n_2, \ldots, n_r,$ respectively.

Super Edge-Magic Deficiency of $K_{n,m}$

- For every two positive integers m and n,\[\mu_s(K_{n,m}) \leq (n - 1)(m - 1). \]
- For any positive integer m, $\mu_s(K_{2,m}) = m - 1$.

- **Conjecture**: For every two positive integers m and n, \[\mu_s(K_{n,m}) = (n - 1)(m - 1) \]

Super Edge-Magic Deficiency of $K_{n,m}$

- For $n = 2, 3$ and 4 and for any positive integers m,
 \[\mu_s(K_{n,m}) = (n - 1)(m - 1) \]
 [1].

- For every two positive integers m and n,
 \[\mu_s(K_{n,m}) = (n - 1)(m - 1) \]
 [2].

Super Edge-Magic Deficiency of $tK_{1,m}$

Figueroa-Centeno et al. (2005) [1]:
- For all positive integers t and n such that t is odd,
 \[\mu_s(tK_{1,n}) = 1. \]

Baskoro and AAGN (2003) [2]:
- For all even integers $t \geq 4$, $\mu_s(tK_{1,2}) = 0$.

Super Edge-Magic Deficiency of $tK_{1,m}$

- For all positive integers t and m such that t is even, $\mu_s(tK_{1,m}) \leq 1$.
- For every positive integer m, $\mu_s(2K_{1,m}) = 1$.
- For all positive integers t and m such that $t \equiv 2 \pmod{4}$ and m is odd, $\mu_s(tK_{1,m}) = 1$.
- For every positive integer t,

$$
\mu_s(tK_{1,3}) = \begin{cases}
0, & \text{if } t \equiv 4 \pmod{8} \text{ or } t \text{ is odd}, \\
1, & \text{if } t \equiv 2 \pmod{4}.
\end{cases}
$$

- **Open Problem:** For even $t \geq 4$ and $m \geq 3$, determine the exact value of $\mu_s(tK_{1,m})$.

Super Edge-Magic Deficiency of $tK_{n,m}$

Simanjuntak, Baskoro, Uttunggadewa and AAGN (2008)[1]:

- For all integers t, n and m, with $t \geq 1$, $n \geq 4$ and $m \geq 4$,
 $$\mu_s(tK_{n,m}) \leq t(nm - n - m) + 1.$$

Ichishima and Oshima (2011)[2]:

- For all integers t, n and m, with $t \geq 1$, $n \geq 2$ and $m \geq 2$,
 $$\mu_s(tK_{n,m}) \leq t(nm - n - m) + 1.$$

- **Conjecture**: For all integers t, n and m, with $t \geq 1$, $n \geq 2$ and $m \geq 2$,
 $$\mu_s(tK_{n,m}) = t(nm - n - m) + 1.$$

Super Edge-Magic Deficiency of Q_n

- For $n \geq 4$, $(n - 4)2^{n-2} + 3 \leq \mu_s(Q_n) \leq (n - 2)2^{n-1} - 4$.
- **Open Problem.** Determine the exact value of $\mu_s(Q_n)$.

For every integer $n \geq 3$,

$$\mu_s(C_n) = \begin{cases}
0, & \text{if } n \equiv 1 \text{ or } 3 \pmod{4}, \\
1, & \text{if } n \equiv 0 \pmod{4}, \\
+\infty, & \text{if } n \equiv 2 \pmod{4}.
\end{cases}$$

Super Edge-Magic Deficiency of 2-regular Graphs

- For every integer $n \geq 3$,

$$\mu_s(2C_n) = \begin{cases}
1, & \text{if } n \text{ is even}, \\
\infty, & \text{if } n \text{ is odd}.
\end{cases}$$

- For every integer $n \geq 3$,

$$\mu_s(3C_n) = \begin{cases}
0, & \text{if } n \text{ is odd}, \\
1, & \text{if } n \equiv 0 \pmod{4}, \\
\infty, & \text{if } n \equiv 2 \pmod{4}.
\end{cases}$$

- For $n \equiv 0 \pmod{4}$, $\mu_s(4C_n) = 1$.

Super Edge-Magic Deficiency of 2-regular Graphs

- **Conjecture:** For every integers \(m \geq 1 \) and \(n \geq 3 \),

\[
\mu_s(mC_n) = \begin{cases}
0, & \text{if } mn \text{ is odd}, \\
1, & \text{if } mn \equiv 0 \pmod{4}, \\
+\infty, & \text{if } mn \equiv 2 \pmod{4}.
\end{cases}
\]

Super Edge-Magic Deficiency of 2-regular Graphs

Holden et al. proved that, for some integer t, $C_5 \cup (2t)C_3$, $C_4 \cup (2t-1)C_3$, and $C_7 \cup (2t)C_3$, are strong vertex-magic, which is in fact equivalent to saying that they are super edge-magic. In other words, they proved that

- $\mu_s(C_5 \cup (2t)C_3) = 0$ for each integer $t \geq 3$.
- $\mu_s(C_4 \cup (2t-1)C_3) = 0$ for each integer $t \geq 3$.
- $\mu_s(C_7 \cup (2t)C_3) = 0$ for each integer $t \geq 1$.

- **Conjectured**: The super edge-magic deficiency of all 2-regular graphs of odd order is zero, excluding $C_3 \cup C_4$, $3C_3 \cup C_4$ and $2C_3 \cup C_5$.

Super Edge-Magic Deficiency of 2-regular Graphs

Figueroa-Centeno, Ichishima, and Muntaner-Batle [1] proved that:

1. \(\mu_s(C_3 \cup C_n) = 0 \) iff \(n \geq 6 \) and \(n \) is even.
2. \(\mu_s(C_4 \cup C_n) = 0 \) iff \(n \geq 5 \) and \(n \) is odd.
3. \(\mu_s(C_5 \cup C_n) = 0 \) iff \(n \geq 4 \) and \(n \) is even.
4. \(\mu_s(C_n \cup C_m) = 0 \) if \(n \) is even and \(m \geq \frac{n}{2} + 1 \) is odd.

Ichishima and Oshima [2] investigated the super edge-magic deficiency of 2-regular graphs \(C_m \cup C_n \) for \(m = 3, 4, 5, 7 \) and any \(n \).

Super Edge-Magic Deficiency of 2-regular Graphs

- Let $G \cong \bigcup_{i=1}^{k} C_{n_i}$, $H \cong \bigcup_{i=1}^{k} (m, n_i)C_{[m,n_i]}$, and let m be odd. If $\mu_s(G) = 0$, then $\mu_s(H) = 0$.

- (a, b) is the greatest common divisor of a and b,
- $[a, b]$ is the least common multiple of a and b.

Super Edge-Magic Deficiency of 2-regular Graphs

Cichacz et al. [1] (2017) introduced a technique for constructing vertex-magic total labelings of 2-regular graphs and proved the following results, which contributes significantly to Holden et al. [2] conjecture.

- [1] If $\mu_s(\bigcup_{i=1}^{k} C_{n_i}) = 0$, then $\mu_s(\bigcup_{i=1}^{k} C_{m_{n_i}}) = 0$ for every odd m.

Super Edge-Magic Deficiency of Join Product Graphs

Join product of two vertex disjoin graphs G and H, $G + H$, is their graph union with additional edges that connect all vertices of G to each vertex of H.

- For any integers $n, m \geq 3$,
 $$\left[\frac{1}{2}(n - 2)(m - 1) \right] \leq \mu_s(P_n + mK_1) \leq (n - 1)(m - 1) - 1.$$

- For any integers $n, m \geq 2$,
 $$\left[\frac{1}{2}(n - 1)(m - 1) \right] \leq \mu_s(K_{1,n} + mK_1) \leq n(m - 1) - 1.$$

- For any integers $n \geq 3$ and $m \geq 2$,
 $$\mu_s(C_n + mK_1) \geq \left\lceil \frac{1}{2}(m + 1)n \right\rceil - (n + m) + 2.$$

- For any integer $m \geq 2$ and odd integer $n \geq 3$,
 $$\mu_s(C_n + mK_1) \leq mn - (n + m) + 1.$$

Super Edge-Magic Deficiency of Join Product Graphs

Let G be a super edge-magic graph of order p and size $q \geq 1$ with a super edge-magic labeling f. For any integer $m \geq 1$,

$$
\mu_s(G + mK_1) \leq \begin{cases}
p + 1 - \min(S), & \text{if } m = 1, \\
(m - 2)(p - 1) + (q - 1), & \text{if } m \geq 2,
\end{cases}
$$

where $S = \{f(x) + f(y) : xy \in E(G)\}$.

Open Problem: Find a better upper bound of $\mu_s(G + mK_1)$ when G is a super edge-magic graph.

Super Edge-Magic Deficiency of Join Product Graphs

1. Let G be a graph with no cycle and isolated vertices. If $\mu_s(G + K_1) = 0$, then G is a tree or a forest.
 - $\mu_s([K_{1,n} \cup K_2] + K_1) = 0$ iff $n = 2$. [1]
 - $\mu_s([P_n \cup K_2] + K_1) = 0$ iff $n = 3, 4, 5$. [1]
 - $\mu_s(DS_n + K_1) = 0, n \geq 1$, where DS_n is a double star. [1]
 - $\mu_s(F_n = P_n + K_1) = 0$ iff $1 \leq n \leq 6$. [2]
 - $\mu_s(C^n_3 = nK_2 + K_1) = 0$ iff $n = 3, 4, 5, 7$. [3]

Super Edge-Magic Deficiency of Join Product Graphs

- Let G be a tree of order $n \geq 7$ and $H \cong G + K_1$. If $\mu_s(H) = 0$ then either $K_3 \cup K_{1,3}$ or $2K_{1,3}$ is a subgraph of H.
- If G is any tree of order $|V(G)| \leq 6$ excluding G_1 then $\mu_s(G + K_1) = 0$.
- $\mu_s(G_1 + K_1) = 1$.

Super Edge-Magic Deficiency of Join Product Graphs

- [1] Let G be a tree and $m \geq 2$ be an integer.
 \[\mu_s(G + mK_1) = 0 \text{ iff } G = P_2. \]

- [1] Let G be a tree of order $n \geq 3$. For every positive integer $m \geq 2$,
 \[\mu_s(G + mK_1) \geq \left\lfloor \frac{(m-1)(n-2) + 1}{2} \right\rfloor. \]

 - $\mu_s(P_4 + mK_1) = m - 1$ and $\mu_s(P_6 + mK_1) = 2(m - 1)$. [2]
 - $\mu_s(P_n + 2K_1) = \frac{n-2}{2}$ for any even integer $n \geq 2$. [3]

Let G be a super edge-magic graph of order p and size $q \geq 1$ with a super edge-magic labeling f. For any integer $m \geq 1$,

$$
\mu_s(G + mK_1) \leq \begin{cases}
 p + 1 - \min(S), & \text{if } m = 1, \\
 (m - 2)(p - 1) + (q - 1), & \text{if } m \geq 2,
\end{cases}
$$

where $S = \{f(x) + f(y) : xy \in E(G)\}$.

Open Problem: Find a better upper bound of $\mu_s(G + mK_1)$ when G is a super edge-magic graph.

Super Edge-Magic Deficiency of Join Chain Graphs

- A chain graph is a graph with blocks $B_1, B_2, B_3, \ldots, B_k$ such that for every i, B_i and B_{i+1} have a common vertex in such a way that the block-cut-vertex graph is a path.

- A chain graph with blocks $B_1, B_2, B_3, \ldots, B_k$ is denoted by $C[B_1, B_2, \ldots, B_k]$.

- If $B_1 = B_2 = \ldots = B_t \cong B$ then $C[B_1, B_2, \ldots, B_k]$ is denoted by $C[B^{(t)}, B_{t+1}, \ldots, B_k]$.

- If for every i, $B_i \cong H$ then $C[B_1, B_2, \ldots, B_k]$ is denoted by kH-path.

- Let $c_1, c_2, \ldots, c_{k-1}$ be the consecutive cut vertices of $C[B_1, B_2, \ldots, B_k]$. The string of $C[B_1, B_2, \ldots, B_k]$ is $(k-2)$-tuple $(d_1, d_2, \ldots, d_{k-2})$ where d_i is the distance between c_i dan c_{i+1}, $1 \leq i \leq k-2$.
Super Edge-Magic Deficiency of Chain Graphs

(a) The chain graph $C[K_4^{(2)}, C_4^{(2)}, K_3^{(2)}]$ with string $(1,1,1,1)$.
(b) The chain graph $6C_4$-path with string $(2,1,2,1)$.
Super Edge-Magic Deficiency of Chain Graphs

- If $G \cong kK_3$-path then, for any integer $k \geq 3$,
 \[\mu_s(G) = \begin{cases}
 0, & \text{if } k \equiv 0, 1 \pmod{4}, \\
 +\infty, & \text{if } k \equiv 2 \pmod{4},
 \end{cases} \]
 and $\mu_s(G) \leq k - 1$, if $k \equiv 3 \pmod{4}$.

- If $G \cong kK_4$-path then, for any integer $k \geq 3$, $\mu_s(G) = 1$.

Super Edge-Magic Deficiency of Chain Graphs

- A diagonal ladder, DL_m, is a graph obtained from the ladder $L_m \cong P_m \times P_2$ by adding two diagonals in each rectangle of L_m.
- $\mu_s(DL_m) = \lceil \frac{m}{2} \rceil$, for every $m \geq 2$. [1]
- Let $H \cong kDL_m$-path with string $(d_1, d_2, \ldots, d_{k-2})$, where $d_i \in \{1, 2, \ldots, m - 1\}$.

![Diagram](image)

Figure: A $4DL_4$-path with string $(3, 3)$.

Super Edge-Magic Deficiency of Chain Graphs

- For any integers \(k \geq 3 \) and \(m \geq 2 \), \(\mu_s(H) \geq \left\lfloor \frac{1}{2}(m - 2)k + 1 \right\rfloor \).
- For any integers \(k \geq 3 \) and \(m \geq 2 \), if \(H \) has string \((m - 1, \ldots, m - 1)\) then \(\mu_s(H) = \left\lfloor \frac{1}{2}(m - 2)k + 1 \right\rfloor \).

Super Edge-Magic Deficiency of Chain Graphs

- Let $F \cong C[K_4^{(k)}, DL_m, K_4^{(n)}]$ with string $(1^{(k-1)}, d, 1^{(n-1)})$, where $d \in \{1, 2, 3, \ldots, m - 1\}$.

 - For any integers $k, n \geq 1$ and $m \geq 2$, $\mu_s(F) \geq \lceil \frac{m}{2} \rceil$.
 - For any integers $k, n \geq 1$ and $m \geq 2$, if F has string $(1^{(k-1)}, m - 1, 1^{(n-1)})$ then $\mu_s(F) = \lfloor \frac{m}{2} \rfloor$.

Super Edge-Magic Deficiency of Chain Graphs

- A triangle ladder, TL_m, is a graph obtained from the ladder $L_m \cong P_m \times P_2$ by adding a single diagonal in each rectangle of L_m.
- $\mu_s(TL_m) = 0$, for every $m \geq 2$. [1]
- For $k \geq 3$, let $G = C[B_1, B_2, \ldots, B_k]$, where $B_j = TL_m$ when j is odd and $B_j = DL_m$ when j is even.

![Diagram of a chain graph]

Figure: A chain graph $C[TL_4, DL_4, TL_4, DL_4]$ with string $(3, 4)$.

Super Edge-Magic Deficiency of Chain Graphs

- For any integer \(m \geq 3 \),

\[
\mu_s(G) \geq \begin{cases}
\left\lfloor \frac{1}{4}k(m-3) \right\rfloor + 1, & \text{if } k \text{ is even,} \\
\left\lfloor \frac{1}{4}(k(m-3) - (m-1)) \right\rfloor + 1, & \text{if } k \text{ is odd.}
\end{cases}
\]

- If \(G \) has string \((m-1, d_1, m-1, d_2, m-1, \ldots, d_{\frac{1}{2}(k-3)}, m-1)\) when \(k \) is odd or \((m-1, d_1, m-1, d_2, \ldots, m-1, d_{\frac{1}{2}(k-2)})\) when \(k \) is even, where \(d_1, d_2, \ldots, d_{\left\lfloor \frac{1}{2}(k-2) \right\rfloor} \in \{m-1, m\} \),

then for any odd integer \(m \geq 3 \),

\[
\mu_s(G) = \begin{cases}
\frac{1}{4}k(m-3) + 1, & \text{if } k \text{ is even,} \\
\frac{1}{4}(k-1)(m-3), & \text{if } k \text{ is odd.}
\end{cases}
\]

Super Edge-Magic Deficiency of Chain Graphs

Let $H \cong C[K_4^{(p)}, TL_m, K_4^{(q)}]$ with string $(1^{(p-1)}, d, 1^{(q-1)})$, where $d \in \{m - 1, m\}$. For any integers $p, q \geq 1$ and $m \geq 2$, $\mu_s(H) = 0$.

Super Edge-Magic Deficiency of Chain Graphs

- For $k \geq 3$, let $G = C[B_1, B_2, \ldots, B_k]$, where $B_j = TL_n$ when j is odd and $B_j = DL_m$ when j is even, where n is not necessarily equal to m.

 - If G has string $(m - 1, d_1, m - 1, d_2, m - 1 \ldots, d_{\frac{1}{2}(k-3)}, m - 1)$ when k is odd or $(m - 1, d_1, m - 1, d_2, \ldots, m - 1, d_{\frac{1}{2}(k-2)})$ when k is even, where $d_1, d_2, \ldots, d_{\frac{1}{2}(k-2)} \in \{n - 1, n\}$, then for any integers $n \geq 2$ and $m \geq 3$ such that m is odd,

 \[
 \mu_s(G) = \begin{cases}
 \frac{1}{4}k(m - 3) + 1, & \text{if } k \text{ is even}, \\
 \frac{1}{4}(k - 1)(m - 3), & \text{if } k \text{ is odd}.
 \end{cases}
 \]

Super Edge-Magic Deficiency of Chain Graphs

- For every integer $k \geq 3$, let $G = C[B_1, B_2, \ldots, B_k]$, where $B_j = DL_m$ when j is odd and $B_j = TL_n$ when j is even.

 - If G has string $(d_1, m - 1, d_2, m - 1, \ldots, m - 1, d_{\frac{1}{2}(k-2)})$, where $d_1, d_2, \ldots, d_{\frac{1}{2}(k-2)} \in \{n - 1, n\}$, then for any integers $n \geq 2$, $k \geq 3$ and $m \geq 3$ such that k and m are odd,

 $$\frac{1}{4}(k + 1)(m + 1) - k \leq \mu_s(G) \leq \frac{1}{4}(k + 1)(m + 1) - (k - 1).$$

References

THANK YOU FOR YOUR ATTENTION